Shawn R. Hitchcock,* Ryan A. Davis, Daniel M. Richmond, Delvis D. Dore, Stephanie
L. Kuschel, Jeremy F. Vaughn, Jesse A. Wolfe, Christopher G. Hamaker, David M. Casper, and Jarvis Dingle

Department of Chemistry, Illinois State University, Normal, IL 61790-4160 Received June 25, 2007

A series of N_{4}-substituted oxadiazinanones have been synthesized from $(1 R, 2 S)$-norephedrine by a process of either reductive alkylation or arylation, N-nitrosation, reduction and cyclization. These derivatives $\left(\mathrm{R}=-\mathrm{CH}_{2} \mathrm{Ph},-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, cyclo $\left.-\mathrm{C}_{6} \mathrm{H}_{11},-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ have been acylated with propanoyl chloride and employed in the asymmetric Aldol reaction. The observed diastereoselectivities for the formation of the "non-Evans" syn-adduct ranged from $88: 12$ to $99: 1$. The hydrolysis of the Aldol adducts varied with the nature of the nitrogen substituent.
J. Heterocyclic Chem., 45, 1265 (2008).

INTRODUCTION

Oxadiazinanones derived from enantiomerically enriched Ephedra alkaloids have been used as chiral auxiliaries for the asymmetric aldol reaction (Figure 1) $[1,2]$. Research with these systems $[2,3]$ suggested that the N_{4}-position of the oxadiazinanone ring was responsible for the observed stereochemical outcome of the aldol addition reaction via a chiral relay tandem [4] involving the $\mathrm{N}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$ positions. In fact, the N_{4}-methyl group present in the $(1 R, 2 S)$-ephedrine based oxadiazinanone generated very good diastereoselectivities in the asymmetric Aldol reaction. In this context we sought to increase the diastereoselectivities beyond the capacity

Figure 1. Oxadiazinanones in the aldol reaction.
of N_{4}-methyl substituent by introducing substituents that were more sterically demanding. Thus, the N_{4}-isopropyloxadiazinanone gave superior diastereoselectivity results
in the asymmetric aldol reaction. Unfortunately, the Aldol adducts proved to be more difficult to hydrolyze than the corresponding N_{4}-methyloxadiazinanones (Figure 2) [5].

The next stage of development of the oxadiazinanones involved the introduction of a bornyl group at the N_{4} position [6]. The N_{4}-bornyloxadiazinanone (6) also gave very good asymmetric induction but the hydrolysis isopropyl system. This led to the conclusion that the oxadiazinanone-mediated Aldol reaction was very sensitive to the steric demands of the N_{4}-substituent.

Figure 2. Oxadiazinanone modifications.
We became interested in determining if there might be an optimal substituent that would allow for high diastereoselection and an effective hydrolysis of the resultant Aldol adducts. Herein, we report on our efforts to prepare both N_{4}-alkyl and N_{4}-aryloxadiazinanones and
to investigate the stereoselectivities in the Aldol reaction and the effectiveness of the hydrolysis process with their Aldol products.

RESULTS AND DISCUSSION

$(1 R, 2 S)$-Norephedrine was reductively alkylated with a variety of aldehydes and sodium borohydride to afford the N-alkyl derivatives 7a-c (Scheme 1). As there was an interest in expanding the scope of substituents that would be ultimately introduced at the N_{4}-position, a copper catalyzed N -arylation method was also employed [7]. This process afforded the N-phenylnorephedrine as a crystalline solid after column chromatography and recrystallization. The norephedrine derivatives 7a-d were subsequently N-nitrosated by treatment with sodium nitrite and $\mathrm{HCl}[8,9]$.

Scheme 1

The N-nitrosamines 8a-d were then reduced with LiAlH_{4} to the corresponding β-amino hydrazines $9 \mathbf{a}-\mathbf{d}$ [10]. Cyclization of these derivatives to afford oxadiazinanones $\mathbf{1 0 a - d}$ was achieved with diethyl carbonate and lithium hydride. These compounds were acylated with propanoyl chloride and lithium hydride to afford N_{3}-propanoyloxadiazinanones 11a-d. The isolated chemical yields for these processes are listed in Table 1 and Table 2. In order to prepare the Aldol adducts of interest, oxadiazinanones 11a-d were each reacted with two equivalents of titanium tetrachloride at $25{ }^{\circ} \mathrm{C}$ for 25 minutes. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and triethylamine was added to effect enolate formation over a period of 45 minutes. The selected aldehyde was then added and the reaction stirred for 18 hours. This process yielded Aldol adducts $\mathbf{1 2 a} \mathbf{- m}$ in good yield and diastereoselectivity (Table 2).

Table 1
Isolated chemical yields from oxadiazinanone synthesis.

entry	substrate	R-	\%yield ${ }^{\text {a }}$
1	7 a	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$99^{\text {b }}$
2	7b	$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$89^{\text {b }}$
3	7c	-cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$85^{\text {b }}$
4	7d	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$34^{\text {b,c }}$
5	8 a	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$67^{\text {b }}$
6	8b	$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$99^{\text {b }}$
7	8 c	-cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$86^{\text {b }}$
8	8d	- $\mathrm{C}_{6} \mathrm{H}_{5}$	$81^{\text {c }}$
9	9 a	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$80^{\text {d }}$
10	9 b	$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$90^{\text {d }}$
11	9 c	-cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$69^{\text {b }}$
12	9 d	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$56^{\text {c }}$
13	10a	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$65^{\text {b }}$
14	10b	$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$67^{\text {b }}$
15	10c	-cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$64^{\text {b }}$
16	10d	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$94^{\text {c }}$
17	11a	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$65^{\text {b }}$
18	11b	$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$59^{\text {b }}$
19	11c	-cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$54^{\text {b }}$
20	11d	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$78^{\text {c }}$

${ }^{a}$ All reported yields are reported after purification. ${ }^{b}$ Purification by recrystallization. ${ }^{c}$ Purification by column chromatography. ${ }^{d}$ Percent recovery for the formation of the hydrazine. The hydrazines underwent decomposition when attempts to purify them by chromatography and were made and were not characterized.

The stereochemical outcome of the asymmetric Aldol reaction was unambiguously determined by single crystal X-ray diffraction (Figure 3, Table 3). There are two molecules of similar bond distances and angles in the asymmetric unit cell; only one is pictured (see experimental section. This X-ray crystal structure suggested that the stereochemistry of the addition process followed the same mechanistic pathway as in the case of the N_{4}-methyl and N_{4}-isopropyl systems, i.e. that a Zimmerman-Traxler chair-like transition state [11], wherein the N_{4}-substituent influenced the direction of approach of the electrophile (Figure 4).

Figure 4. Proposed transition state for the oxadiazinone mediated asymmetric aldol addition reaction.

Table 2
Isolated yields and diastereoselectivities for the oxadiazinanone based asymmetric aldol addition reaction.

The X-ray crystal structure further suggested that the N_{4}-substituent was being held in a pseudo-axial position. The measured dihedral angle between the C_{5}-methyl group and the N_{4}-methyl group (C50a-C5a-N4a-C40a) was $172.7^{\circ}(3)$ in molecule a, and $173.9^{\circ}(3)$ in molecule b (C50b-C5b-N4b-C40b). This value is close to the idealized 180° dihedral angle that would be expected from the optimized chiral relay tandem of the $\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{N}_{4}$ positions.

Figure 3. ORTEP diagram of one of the two independent molecules of oxadiazinanone 12c showing the partial atom-numbering scheme with 30% probablility ellipsoids. Hydrogen atoms have been drawn arbitrarily small.

The diastereoselectivities of the Aldol reactions for oxadiazinanones 11a-c ($\mathrm{N}_{4^{-}}=$-benzyl, -neopentyl, and -cyclohexyl) were all very good. The N_{3}-propanoyl-N_{4}-phenyloxadiazinanone 11d also gave comparable diastereoselectivities even though the N_{4}-phenyl is more sterically demanding. It is proposed that there is a resonance interaction between the N_{4}-nitrogen and the phenyl ring would lead to the N_{4}-position not having the nearly idealized 180° dihedral angle with the C_{5}-position and its substituent (Figure 5). Effectively, the impact of the intramolecular chiral relay would not be transmitted as effectively and this would potentially lead to the observed diastereoselectivities.
At this stage we turned our attention to the hydrolysis process. The reaction involving the acid catalyzed hydrolytic cleavage of the N_{3}-amide bond has been a consistent problem with the oxadiazinanone family of chiral auxiliaries. Our previous efforts suggested that the success of the hydrolysis reaction was coupled with the steric demands of the N_{4}-substituent [2,3,5]. In order to evaluate the hydrolysis reaction for the oxadiazinanones 10a-d ($\mathrm{R}=$-benzyl, -neopentyl, -cyclohexyl, and -phenyl) in this work, Aldol adducts 12a, 12e, 12j, and 121 were subjected to the hydrolysis conditions (Table 4).

Table 3
X-ray crystallographic data.

Formula	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	410.5
Crystal dimensions (mm)	$0.45 \times 0.36 \times 0.36$
Space group	Monoclinic, $P 2_{1} \text { (No. 4) }$
$a(\AA)$	10.032(2)
$b(\AA)$	10.860(5)
$c(\AA)$	20.964(5)
$\beta\left({ }^{\circ}\right)$	93.09(2)
$V\left(\AA^{3}\right)$	2280.8(12)
Z	4
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.195
$\mu\left(\mathrm{mm}^{-1}\right)$	0.081
Radiation	Mo K α $(\lambda=0.71069 \AA)$
Temperature (K)	297
Reflections Collected	11612
Independent reflections	5499
Reflections observed $[I>2 \sigma(I)]$	3465
R indices (all data)	0.058 (0.100)
$w R_{2}$ indices (all data)	0.149 (0.174)
Goodness-of-fit	0.9940

11d

Figure 5

The isolated yields were poor to fair and the enantiomeric excesses were in line with the diastereomeric excess of the samples that were used (i.e., there was no significant compromise of the stereochemical integrity of the Aldol adduct) [12]. Unfortunately, all attempts at the hydrolysis of the N_{4} phenyloxadiazinanone derivative $\mathbf{1 2 1}$ gave complicated mixtures (retro-Aldol products, ring opening of the oxadiazinanone, dehydration of the Aldol adduct, etc). Attempts at reductive cleavage of the Aldol adducts also met with problems that appeared to be primarily connected with the decomposition of the oxadiazinanone, $e . g$. ring opening events. It is proposed that the N_{4}-phenyl substituent was detrimental to the hydrolysis process by virtue of its steric volume in combination with an electronic effect.

Table 4
Hydrolysis of selected oxadiazinanone Aldol adducts.

12a,e,j,I

entry	substrate	$\%$ yield $^{\mathrm{a}}$	er^{b}	isomer $^{\mathrm{c}}$
1	$\mathbf{1 2 a}$	43	$91: 9$	$(2 S, 3 S)$
2	$\mathbf{1 2 e}$	21	$93.5: 6.5$	$(2 S, 3 S)$
3	$\mathbf{1 2 j}$	18	$97.5: 2.5$	$(2 S, 3 S)$
4	$\mathbf{1 2 1}$	-	-	-

${ }^{a}$ Isolated yield after column chromatography. ${ }^{\text {b }}$ Enantiomeric ratio determined by chiral stationary phase HPLC: OD column, 95:5 hexanes, $\mathrm{iPrOH}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}$ $(2 R, 3 R)$-ester $=8.7 \mathrm{~min} . ; t_{\mathrm{r}}(2 S, 3 S)$-ester $=10.0 \mathrm{~min}$. ${ }^{\text {c }}$ The absolute stereochemistry was determined by polarimetry.[12]

CONCLUSION

Oxadiazinanones can be used successfully in the asymmetric Aldol reaction to good effect with regard to isolated yield and the diastereoselectivity of the Aldol adducts obtained. However, there is an intrinsic problem associated with the hydrolysis of the Aldol adducts. Simple modifications of the N_{4}-position with either alkyl or aryl substituents are not enough to allow for both good diastereoselectivity in the Aldol addition reaction and for a clean hydrolysis process. The primary substituted $\mathrm{N}_{4}{ }^{-}$ benzyl and N_{4}-neopentyl systems did not offer superior hydrolyses over the secondary N_{4}-isopropyl oxadiazinanone previously described [5]. The hydrolysis of the $\mathrm{N}_{4}{ }^{-}$ cyclohexyloxadiazinanone $\mathbf{1 2 j}$ afforded the desired product but with a compromised yield. Finally, the hydrolysis of the N_{4}-phenyl oxadiazinanone proved to be ineffective, perhaps due to the electronic contribution of the aromatic ring. Research is underway to investigate the introduction of substituents that carry a greater possibility for influencing the final outcome of the oxadiazinanone mediated Aldol reaction and the associated hydrolysis.

EXPERIMENTAL

General Remarks. All reactions were run under a nitrogen atmosphere. Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled from a potassium/sodium alloy with benzophenone ketyl. Unless otherwise noted, all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ in CDCl_{3} operating at 400 MHz and 100 MHz , respectively. Chemical shifts are reported in parts per million (δ scale), and coupling constants (J values) are listed in hertz (Hz). Infrared spectra are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$ and are measured either as a neat
liquid or as a KBr window. Melting points were recorded on a Mel-Temp apparatus and are uncorrected. High Resolution ESI Mass spectral analyses were conducted by the mass spectrometry analytical laboratories of the University of Illinois at Urbana-Champaign (UIUC) using a quadrapole time of flight mass spectrometer hybrid with MS/MS capability. A 50/50 mixture of water and acetonitrile was used as the flow phase for the ESI measurements. High Resolution EI mass spectral analyses were conducted using a micromass 70 VSE 8 kV mass spectrometer with extended geometry and gas chromatographic capacity (UIUC). High resolution FAB mass spectral data (xenon gas matrix) were collected on a four-sector $8 \mathrm{kV} 70-\mathrm{SE}-$ 4 F mass spectrometer with extended geometry and gas chromatographic capacity (UIUC). Optical activities were measured using at 589 nm using a Jasco digital polarimeter purchased with NSF grant \#CHE 644950.

X-ray crystallography. Crystallographic data (excluding structure factors) for structure 12c reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. The atomic coordinates and equivalent isotropic displacement coefficients are included in the deposited material (CCDC 617657) as are a complete list of bond distances and angles. Copies of available material can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2, 1EZ, UK (Fax: + 44-1223-336033 or email: deposit@ccdc.am.ac.uk).

Colorless crystals of $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ suitable for crystallography were isolated by layering a solution of $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with hexanes. Data were collected on a Bruker-Nonius CAD4/Mach3 diffractometer at 297 K. Data collection and cell refinement was performed using CAD4 express [13]. Data reduction was carried out using XCAD4 [14]. Unit cell parameters were obtained from a least-squares refinement of 25 centered reflections. Solution and data analysis were performed using the WinGX software package [15]. The structures were solved using the program SHELXS-97 [16]. The refinements were completed using the program SHELXL-97 [17]. Hydrogen atoms were assigned positions based on the geometries of their attached carbons. See Table 3 for final refinement parameters. There are 2 independent molecules in the asymmetric unit cell, both with similar bond lengths and angles.

General procedure for the reductive alkylation of $(1 R, 2 S)$ norephedrine (7a-c). In a flame-dried, nitrogen-purged, one liter round bottom, $(1 R, 2 S)$-norephedrine (66.0 mmol) was placed with the appropriate aldehyde (69.5 mmol) and 100% ethanol (66 mL). The mixture was stirred for 24 hours and cooled to $0^{\circ} \mathrm{C}$. Sodium borohydride was added to the reaction mixture and stirred for an additional two hours. The reaction was then diluted with sodium hydroxide $(1 M, 100 \mathrm{~mL})$ and the ethanol was removed by rotary evaporation. The resultant mixture was then diluted with ethyl acetate (200 mL) and extracted. The organic layer was then washed with brine (50 $\mathrm{mL})$ and the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed by rotary evaporation.
(1R,2S)-2-(Benzylamino)-1-phenyl-1-propanol (7a). Using benzaldehyde, the title compound was obtained in 99% yield as a clear oil. $\mathrm{R}_{\mathrm{f}}=0.42$ (90:10 hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-30.0(c$ $\left.0.86, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3406,3028,1603,1028,910,732$, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.01(\mathrm{dq}$, $J=6.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=3.18 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.35 (m, 10H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.7,51.4,58.1,73.9$, $126.6,127.4,127.5,128.4,128.5,128.9,140.3,142.2$. HRMS
(ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$: 242.1535 Found: 242.1545.
(1R,2S)-2-(2,2-Dimethylpropylamino)-1-phenyl-1-propanol (7b). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the previously prepared material.
(1R,2S)-2-Cyclohexylamino-1-phenyl-1-propanol (7c). The purified product was isolated via recrystallization, affording 19.73 g of a white solid in 85% yield. $\mathrm{Mp}: 89-91{ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=+11.2\left(c \quad 1.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (nujol mull): 3278, $1102,738,701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 0.78(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-1.34(\mathrm{~m}, 7 \mathrm{H}), 1.59-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.59(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 12.7,24.8,24.9,25.5,31.8,32.5,54.3,55.8,72.4$, 126.0, 127.0, 128.0, 140.9. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$ $(\mathrm{M}+\mathrm{H})^{+}: 234.1858$. Found: 234.1858.
(1R,2S)-2-(N-Phenylamino)-1-phenyl-1-propanol (7d). In a flame-dried, nitrogen-purged 1 L round bottom flask fitted with a condenser, was placed $(1 R, 2 S)$-norephedrine $(20.0 \mathrm{~g}, 132$ $\mathrm{mmol})$, sodium hydroxide $(10.6 \mathrm{~g}, 265 \mathrm{mmol})$, iodobenzene (18 $\mathrm{mL}, 158 \mathrm{mmol})$, and 2-propanol $(132 \mathrm{~mL})$. A catalytic amount of copper(I) iodide ($2.5 \mathrm{~mol} \%, 0.630 \mathrm{~g}, 3.3 \mathrm{mmol}$) was then added and the reaction was heated at reflux for a period of 18 hours. At the end of this time, the reaction was cooled to room temperature and the reaction solvent was removed by rotary evaporation. The solid residue was treated with EtOAc and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was subsequently washed with a saturated solution of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed by rotary evaporation. The resultant dark brown oil was purified on silica gel with a yield of 34% as white crystals. Mp: $78-80{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right): 3180,1601,1073$, 757, $704 \mathrm{~cm}^{-1} . \quad[\alpha]_{\mathrm{D}}{ }^{25}=+84.9\left(c \quad 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{~s},-\mathrm{OH}), 3.77-3.82$ $(\mathrm{dq}, J=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.78(\mathrm{~m}$, $3 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 13.6,54.1,74.0,113.9,117.8,125.7$, 127.1, 128.1, 129.2, 141.4, 146.9. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 228.1388$. Found: 228.1392.

General procedure for the N-nitrosation of the N alkylated norephedrine derivatives (8a-d). In a 1 L round bottom flask equipped with a stir bar was placed the $(1 R, 2 S)-2$ -(benzylamino)-1-phenyl-1-propanol (66.0 mmol) along with $2.74 M$ hydrochloric acid (75.9 mmol) and THF (66 mL). Sodium nitrite (79.0 mmol) was added in small portions. The reaction was diluted with a saturated solution of sodium bicarbonate $(50 \mathrm{~mL})$ and THF was removed by rotary evaporation. The resulting mixture was then extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The organic layer was washed with brine solution $(20 \mathrm{~mL})$ and the resultant organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$. The remaining solvent was removed by rotary evaporation to afford the desired product.
(1R,2S)-N-Benzyl- N-nitroso-2-amino-1-phenyl-1-propanol (8a). This process yielded a yellow oil, which, after recrystallization from ethyl acetate and hexanes, gave white crystals in a 67% yield ($12.0 \mathrm{~g}, 44.4 \mathrm{mmol}$); wherein the rotameric ratio was determined by ${ }^{1} \mathrm{H}$ NMR to be $c a .95: 5(E: Z)$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral values reported are of the major diastereomer only. Mp: $90-91^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=+115.7\left(c 3.02, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3329,1634,1024$, $730,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $4.30(\mathrm{dq}, J=7.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 1 \mathrm{H})$,
7.25-7.33 (m, 10H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.7,15.0,48.1,64.3$, 126.5, 128.0, 128.3, 128.4, 128.8, 129.1, 134.5, 140.9. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+8}\right):$ 270.1369. Found: 270.1368. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: \%C, $70.82, \% \mathrm{H}, 6.68, \% \mathrm{~N}, 10.33$. Found: \%C, $71.01, \% \mathrm{H}, 6.66, \% \mathrm{~N}, 10.36$.
(1R,2S)-N-Nitroso-N-2-amino-(2,2-dimethylpropyl)-1-phenyl-1-propanol (8b). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the previously prepared material.
(1R,2S)-N-Cyclohexyl- N-nitroso-2-amino-1-phenyl-1-propanol (8c). Recrystallization of the product afforded the title compound as a white solid in 86% yield. Mp: $96-98{ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=+48.3$ (c 1.02, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Only the major N-nitrosamine diastereomer is reported. IR (nujol): 3448, 1030, 700, $671 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.17-1.22(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{~d}, J=7.0,3 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.78(\mathrm{~m}, 3 \mathrm{H})$, 1.82-1.94 (m, 4H), 3.17 (broad singlet, 1 H$), 3.95-4.01(\mathrm{~m}, 1 \mathrm{H})$, 4.35 (broad singlet, -OH), 4.92 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.37$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.1,24.9,25.5,25.6,32.5,33.4$, $61.9,73.6,125.6,127.4,127.9,141.7$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 263.1760$. Found: 263.1761.
(1R,2S)-2-(N-Nitroso- N-phenylamino)-1-phenyl-1-propanol (8d): The dark brown oil was purified on silica gel to yield the title compound as a light brown oil in 81% yield. Only the major N-nitrosamine diastereomer is reported. This compound decomposes upon standing at room temperature for more than one hour. $[\alpha]_{\mathrm{D}}{ }^{25}=+31.9\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3408$, $1167,758,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 2.76$ (broad singlet, 1H), 4.88-4.94 (m, 1H), $5.13(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.0,60.1$, 73.4, 125.0, 125.9, 127.9, 128.4, 128.9, 129.3, 140.8, 141.3. HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 257.1290$. Found: 257.1300.

General Procedure for the formation of the hydrazine and resultant oxadiazinanone ($10 \mathrm{a}-\mathrm{c}$). In a flame-dried, nitrogenpurged 3-necked 2 L round bottom flask fitted with an addition funnel with a pressure equalizing arm, and a condenser were placed lithium aluminum hydride (132 mmol) and anhydrous THF (270 mL). The mixture was then heated to reflux. The N nitrosamine (44.4 mmol) was dissolved in anhydrous THF (100 mL) and placed into the addition funnel, where it was added dropwise into the lithium aluminum hydride solution at reflux. After the last drop of dissolved nitrosamine had been added, the reaction mixture was stirred at reflux for two and a half hours and then was cooled to room temperature. Once at room temperature the 3 -necked 2 L round bottom flask was placed into an ice bath and the reaction was quenched with water (100 mL), which was added dropwise through the addition funnel. Then $3 M$ sodium hydroxide (40 mL) was added dropwise to finalize the quenching process. The reaction mixture was then transferred to a 2 L round bottom flask where the THF was removed by rotary evaporation. The resulting mixture, free of most of the THF was then extracted with ethyl acetate (2×20 mL). The combined organic layer was then washed in Rochelle's solution (20 mL) and then in brine (20 mL). The final organic layer is dried using magnesium sulfate and the ethyl acetate removed by rotary evaporation to afford the hydrazine, which was directly converted into the corresponding oxadiazinone heterocycle derivatives, due to facile decomposition.

In a flame-dried, nitrogen purged 1 L round bottom flask was placed the hydrazine (44.4 mmol) and hexanes $(270 \mathrm{~mL})$. To this solution was added diethyl carbonate (48.8 mmol) and the
solution was heated to reflux. Once at reflux, lithium hydride ($\mathrm{LiH}, 88.8 \mathrm{mmol}$) was added to the reaction mixture, which was allowed to stir overnight. The mixture was then cooled to room temperature and the solvent was removed by rotary evaporation. The reaction mixture was dissolved in ethyl acetate and washed with $1 M \mathrm{HCl}(3 \times 25 \mathrm{~mL})$, a saturated solution of sodium bicarbonate (100 mL), and then a saturated solution of brine $(100 \mathrm{~mL})$. The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed by rotary evaporation.
(5S,6R)-4-Benzyl-5-methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one (10a). The N-nitrosamine reduction was carried out at room temperature. The hydrazine was obtained in 80% recovered yield. The cyclization of the hydrazine afforded a solid product that was recrystallized from ethyl acetate and hexanes to yield a white solid in a 65% yield. Mp: $98-99^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}$ $=0.36(80: 20$ hexanes/EtOAc $) .[\alpha]_{d}^{25}=+16.3\left(c 0.47, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): 1776, 1695, 1218, 1014, $744,704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.83-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dq}, J=7.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.57(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 9.2,12.5,31.5,51.5,59.5,78.0,125.0,128.3,128.6,128.9$, 129.1, 129.5, 135.5, 136.1, 148.8, 175.0. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 338.1627 . Found: 338.1630. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: \%C 70.99, \%H $6.51 \% \mathrm{~N} 8.28$ Found: \%C 70.81, \%H $6.51, \% \mathrm{~N} 8.42$.
(5S,6R)-5-Methyl-4-(2,2-dimethylpropyl)-6-phenyl-2H-1,3, 4-oxadiazinan-2-one (10b). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the previously prepared material.
(5S,6R)-4-Cyclohexyl-5-methyl-6-phenyl-2H-1,3,4-oxadia-zinanan-2-one (10c). The hydrazine product was recrystallized from hexanes and ethyl acetate to give a 69% isolated yield. The heterocycle product was isolated via recrystallization, affording 9.73 g of the title compound as a white solid in 64% yield. Mp: 89-91 ${ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $\quad[\alpha]_{\mathrm{D}}{ }^{25}=+15.1$ (c 2.01, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (nujol): $1698,1015,727,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.62-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.86-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.57(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}), 7.29-7.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.9,24.2,24.3,25.6,30.2,50.6,63.0,75.2,125.1$, 127.7, 128.4, 136.6, 152.7. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}:$275.1760. Found: 275.1760. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $70.04 ; \mathrm{H}, 8.08 ; \mathrm{N}, 10.21$. Found: C, $70.04 ; \mathrm{H}$, 8.12; N, 10.21 .
(5S,6R)-5-Methyl-4,6-diphenyl-2H-1,3,4-oxadiazinan-2-one (10d). In a flame-dried, nitrogen-purged 1 L round bottom flask fitted with a Claisen adapter, fitted with a condenser and an addition funnel, was placed $\mathrm{LiAlH}_{4}(4.2 \mathrm{~g}, 117 \mathrm{mmol})$ and dissolved in THF (50 mL). This solution was stirred and the nitrosamine ($7.2 \mathrm{~g}, 28 \mathrm{mmol}$) dissolved in THF was added drop wise via the addition funnel. After total incorporation of the nitrosamine, the reaction was allowed to progress for four hours. The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of $1 \mathrm{M} \mathrm{NaOH}(500 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc, washed with a saturated solution of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the reaction solvent was removed by rotary evaporation. The remaining residue was purified by column chromatography to yield a pale yellow oil in 56%. IR $\left(\mathrm{CHCl}_{3}\right)$: 3404, 3057, 749, $693 \mathrm{~cm}^{-1}$. Hydrazine: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 0.99 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.95-4.00(\mathrm{qd}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8$
$\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.8,60.2,77.4,112.9,119.2$, 126.0, 127.1, 128.2, 129.4, 142.3, 150.9. HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 243.1497$. Found: 243.1490.
In a flame-dried, nitrogen-purged 250 mL round bottom flask fitted with a condenser were placed the hydrazine ($3.8 \mathrm{~g}, 16$ $\mathrm{mmol})$, and dissolved in hexanes (50 mL). Diethylcarbonate (4.7 $\mathrm{mL}, 39 \mathrm{mmol}$) was added to this stirred solution and the system was brought to reflux. Upon refluxing, lithium hydride (0.020 g , 17 mmol) was added in one portion and the reaction progressed for 18 hours. The reaction was then cooled to $25^{\circ} \mathrm{C}$ and quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the hexanes removed by rotary evaporation. The solid residue obtained was extracted into EtOAc and washed with a saturated solution of sodium chloride. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed via rotary evaporation. The resultant brown oil was purified by chromatography, giving 2.1 g of the title compound in 94% yield as a colorless oil. $[\alpha]_{D}{ }^{25}=+96.1(c$ $\left.0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3235,2903,1699,1230,756 \mathrm{~cm}^{-1}$. ${ }^{1}$ HNMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.96-3.99(\mathrm{~m}, 1 \mathrm{H})$, $5.38(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) 6.58$ (broad singlet, -NH), 7.12 (t, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.43(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 11.1$, 58.4, 76.8, 117.8, 123.2, 125.0, 128.0, 128.4, 135.6, 149.5, 152.6. HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 291.1109$. Found: 291.1105.

Representative experimental for \mathbf{N}_{3}-acylation of the oxadiazinanones (11a-d). In a flame dried, nitrogen purged 1 L round bottom flask was added the oxadiazinanone (44.3 mmol) and dichloromethane (45 mL). Propanoyl chloride (4.5 mL , 53 mmol) was added to this mixture and the reaction was heated to reflux. Once at reflux, lithium hydride (89 mmol) was added to the reaction vessel and the reaction was allowed to stir at reflux for 18 hours. After the 18 hour period, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with a saturated ammonium chloride solution (20 mL). The resulting mixture was extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$) and the organic layer washed with a saturated solution of sodium chloride (20 mL). The final extracted organic layer was then dried using magnesium sulfate and the solvent removed by rotary evaporation.
(5S,6R)-4-Benzyl-5-methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one (11a). The compound was isolated and recrystallized from ethyl acetate and hexanes to yield a white solid in a 65% yield. Mp: $98-99^{\circ} \mathrm{C}$ (hexanes/EtOAc). $\mathrm{R}_{\mathrm{f}}=0.36$ ($80: 20$ hexanes/EtOAc). $[\alpha]_{\mathrm{d}}^{25}=+16.3\left(c 0.47, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 1776,1695,1652,1218,1014,744,704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.83-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dq}, J=4.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.57(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \quad \delta 9.2,12.5,31.5,51.5,59.5,78.0,125.0,128.3$, 128.6, 128.9, 129.1, 129.5, 135.5, 136.1, 148.8, 175.0. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 338.1627. Found: 338.1630 Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: \%C 70.99, \%H $6.51 \% \mathrm{~N} 8.28$ Found: \%C 70.81, \%H 6.51, \%N 8.42.
(5S,6R)-5-Methyl-4-(2,2-dimethylpropyl)-3-propanoyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (11b). The compound was isolated and recrystallized from ethyl acetate and hexanes to yield a transparent solid in a 59% yield ($10.8 \mathrm{~g}, 33.9 \mathrm{mmol}$). Mp: 106-107 ${ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $\quad \mathrm{R}_{\mathrm{f}}=0.27$ (90:10 hexanes/EtOAc). $[\alpha]_{d}^{25}=-92.1\left(c \quad 0.60, \mathrm{CHCl}_{3}\right)$. IR (neat): $1720,1606,1041,1017,732,697 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$,
2.81 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.98$ (m, 2H), 2.98 (d, $J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.47(\mathrm{dq}, J=7.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.3,13.2,28.5$, $31.6,32.7,57.3,69.3,80.0,125.1,128.3,128.9,136.5,149.7$, 175.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$: \%C $67.88, \% \mathrm{H} 8.26, \% \mathrm{~N}$ 8.81. Found: \%C $67.94, \% \mathrm{H} 8.35, \% \mathrm{~N} 8.84$.
($\mathbf{4 R , 5 S , 6 R) - 4 - C y c l o h e x y l - 5 - m e t h y l - 6 - p h e n y l - 3 - p r o p a n o y l - ~}$ $\mathbf{2 H}-\mathbf{1}, \mathbf{3}, \mathbf{4}$-oxadiazinan-2-one (11c). The solvent was removed via rotary evaporation to afford a white solid that was isolated via recrystallization (54\% yield). Mp: 141-143 ${ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{D}{ }^{25}=-93.6\left(c 0.75, \mathrm{CHCl}_{3}\right)$. IR (nujol): 1723, 1604, 1017, 757, $742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta, 0.77(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-2.11(\mathrm{~m}, 10 \mathrm{H})$, 2.84-3.07 (m, 3H), $3.83(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-$ $7.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 9.1,12.7,24.5,24.7,24.7$, $25.3,30.2,30.3,50.5,61.6,78.7,124.6,127.8,128.4,175.3$. HRMS (EI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 330.1943. Found: 330.1949. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.06; $\mathrm{H}, 7.93 ; \mathrm{N}$, 8.48. Found: C, 69.25 ; H, 8.01 ; N, 8.58 .
(5S,6R)-5-Methyl-4,6-diphenyl-3-propanoyl-2H-1,3,4-oxa-diazinan-2-one (11d). The resulting light brown oil was chromatographed, yielding the title compound as a colorless oil in 78% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=-24.7\left(c 0.070, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$: 1777, 1732, 1127, 754, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.84(\mathrm{dq}, J=18.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=18,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.32(\mathrm{~m}, 1 \mathrm{H}), 5.56$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28-7.40 (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta, 8.7,11.3,30.1,57.0$, $79.8,116.5,123.5,124.7,128.2,128.5,128.6,129.9,135.0$, 147.1, 147.8, 174.2. HRMS (EI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+$ $\mathrm{H}^{+}: 325.1552$. Found: 325.1553 .

Representative procedure for the formation of the aldol adducts (12a-m). In a flame-dried, nitrogen-purged, 100 mL round bottom flask was added the N_{3}-propanoyloxadiazinanone $(1.47 \mathrm{mmol})$ and THF $(5 \mathrm{~mL})$. The solution was stirred and then $\mathrm{TiCl}_{4}(2.96 \mathrm{mmol})$ was added and the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 40 minutes before adding distilled triethylamine (2.96 mmol) by syringe. After addition of triethylamine the reaction was stirred for an hour. After the hour time period, 2-naphthaldehyde (2.96 mmol) was added at $0^{\circ} \mathrm{C}$ after which the reaction mixture was allowed to gradually warm up to room temperature with stirring for 5 hours. The reaction was then quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the THF removed by the rotary evaporator. The solution was extracted with EtOAc ($2 x 50 \mathrm{~mL}$) and the extracted washed with brine solution $(50 \mathrm{~mL})$. The final organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed using the rotary evaporator.
(5S,6R)-4-Benzyl-3-[(2S,3S)-(3-hydroxy-2-methyl-3-phen-ylpropanoyl)]-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (12a). This reaction afforded the product which was purified by column chromatography in a gradient solvent system (90:10 hexanes/EtOAc followed by 80:20 hexanes/EtOAc), resulting in a 99% yield. $\mathrm{R}_{\mathrm{f}}=0.42$ (60:40 hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-4.7(c$ $0.62, \mathrm{CHCl}_{3}$). IR (neat): $3582,1718,1252,1007,734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.98(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dq}, J=11.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-416(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}) 6.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.0,12.6,47.3,51.7,59.4,73.5,78.4,125.0,126.4$, $127.6,128.5,128.8,129.0,129.2,129.6,135.3,135.8,141.8$,
148.9, 177.9. HRMS (EI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 444.2044. Found: 444.2049.
(5S,6R)-4-Benzyl-3-[(2S,3S)-(3-hydroxy-2-methyl-3-(2-napthyl)propanoyl)]-5-methyl-6-phenyl- $2 H-1,3,4-$ oxadiazin-an-2-one (12b). This reaction produced clear oil (0.686 g) after performing column chromatography in a gradient solvent system (90:10 hexanes/EtOAc followed by 80:20 hexanes/EtOAc), resulting in a 95% yield. $\mathrm{R}_{\mathrm{f}}=0.80$ ($50: 50$ hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-17.9\left(c 0.47, \mathrm{CHCl}_{3}\right)$. IR (neat): 3470, 1716, 1253, $749,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{dq}, J=$ $6.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27(\mathrm{dq}, J=7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.57(\mathrm{~m}, 12 \mathrm{H}), 7.82-$ $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.812 .6$, $47.1,51.8,59.4,73.4,78.4,124.5,125.0,125.2,126.0,126.3$, $127.9,128.2,128.3,128.5,128.8,129.0,129.2,129.6,133.0$, 133.4, 135.3, 135.8, 139.2, 149.0, 178.0. HRMS (ESI): Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 495.2293$. Found: 495.2284 .
(5S,6R)-4-Benzyl-3-[(2S,3S)-(3-hydroxy-2,4-dimethylpen-tanoyl)]-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (12c). This reaction product was purified using column chromatography in solvent system of 70:30 hexanes/EtOAc and then recrystallized from methylene chloride and hexanes to give transparent crystals in 99% yield. Mp. $=145-147{ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $\mathrm{R}_{\mathrm{f}}=0.64$ ($50: 50$ hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-$ 11.2 (c 0.49, CHCl_{3}). IR (nujol): 3455, 1724, 1703, 1231, 755, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.69(\mathrm{dq}, J=7.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H})$, 3.50 (d, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dq, $J=7.0,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (d, J $=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.54(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 10.2,12.7,19.1,19.8,31.0$, $42.1,51.8,59.5,76.9,78.4,125.0,128.4,128.8,128.9,129.2$, 129.6, 135.3, 135.9, 148.8, 178.9. HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 410.2201$. Found: 410.2205 .
(5S,6R)-4-Benzyl-3-[(2S,3S)-(3-hydroxy-2,4,4-trimethyl-pentanoyl)]-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (12d). This reaction produced a clear oil that was purified by column chromatography in a gradient solvent system (90:10 hexanes/EtOAc followed by 80:20 hexanes/EtOAc), resulting in a 70% yield. $\mathrm{R}_{\mathrm{f}}=0.74$ (50:50 hexanes $/ \mathrm{EtOAc}$). $[\alpha]_{\mathrm{D}}{ }^{25}=-4.5(c$ $0.57, \mathrm{CHCl}_{3}$). IR (neat): $3525,1716,1249,1137,733,700 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.22$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dq}, J=$ $11.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (m, 1H), 4.17 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dq, $J=7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.53$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.8,13.1,27.2,35.9$, $41.3,51.9,59.4,78.0,78.4,125.0,128.4,128.7$, 128.9, 129.2, 129.6, 135.3, 135.9, 148.8, 179.5. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 424.2364$. Found: 424.2362 .
(5S,6R)-3-[(2S,3S)-(3-Hydroxy-2-methyl-3-phenylpropan-oyl)]-4-(2,2-dimethylpropyl)-5-methyl-6-phenyl-2H-1,3,4-oxa-diazinan-2-one (12e). The resultant orange oil was chromatographed using silica gel and a gradient solvent system (90:10 hexanes/EtOAc, 80:20 hexanes/EtOAc, followed by 65:35 hexanes/EtOAc) to give clear oil in a 98% yield (0.655 g , $1.54 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.22$ (80:20, hexanes $/ \mathrm{EtOAc}$) $.[\alpha]_{\mathrm{D}}{ }^{25}=-85.5$ (c $0.74, \mathrm{CHCl}_{3}$). IR (neat): $3479,1734,1701,1241,1130,761$, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$
(s, 9H), 1.12 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (d, $J=13.5,1 \mathrm{~Hz}$), $3.12(\mathrm{~d}, J=2.7,1 \mathrm{H}), 3.50(\mathrm{p}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dq}, J=3.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.46(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.0$, $13.2,28.5,32.7,46.7,57.1,68.9,73.5,79.2,125.0,126.5,127.6$, $128.4,128.5,129.0,136.2,141.7,149.7,177.6$. HRMS (FAB): Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 425.2447$. Found: 425.2440 .
(5S,6R)-3-[(2S,3S)-(3-p-Chlorophenyl-3-hydroxy-2-methyl-propanoyl)]-4-(2,2-dimethylpropyl)-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (12f). The resultant orange oil was chromatographed using silica gel and a gradient solvent system (90:10 hexanes/EtOAc, 80:20 hexanes/EtOAc, followed by 65:35 hexanes/EtOAc) to give clear oil in a 91% yield. $\mathrm{R}_{\mathrm{f}}=$ 0.17 (80:20 hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-69.7\left(c 0.47, \mathrm{CHCl}_{3}\right)$. IR (neat): 3502, $1719,1240,1014,735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.66(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (d, $J=2.3,1 \mathrm{H}), 3.49$ (p, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (dq, $J=7.0,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.1,13.2,28.5,32.7,46.6,57.1$, $68.9,72.9,79.3,125.0,127.9,128.4,128.5,129.0,133.2,136.1$, 140.4, 149.8, 177.4. HRMS (FAB): Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$ (M $+\mathrm{H})^{+}: 459.2048$. Found: 459.2051.
(5S,6R)-3-[(2S,3S)-(3-Hydroxy-2-methyl-3-(2-naphthyl)-propanoyl)]-5-methyl-4-neopentyl-6-phenyl-2H-1,3,4-oxadia-zinan-2-one ($\mathbf{1 2 g}$). The resultant orange oil was purified by column chromatography using silica gel and a gradient solvent system (80:20, hexanes/EtOAc followed by 75:25, hexanes/EtOAc) to give a clear oil in a 99% yield ($0.737 \mathrm{~g}, 1.55$ mmol). $\quad \mathrm{R}_{\mathrm{f}}=0.29$ (80:20 hexanes/EtOAc). $\quad[\alpha]_{\mathrm{D}}{ }^{25}=-68.6(c$ $1.07, \mathrm{CHCl}_{3}$). IR (neat): $3494,1723,1603,1241,1135,753,700$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$, $1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.68(\mathrm{~d}, J=13.7,1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dq}, J=3.5,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.57(\mathrm{~m}, 9 \mathrm{H})$, 7.82-7.94 (m, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta \quad 11.6,13.2,28.5$, $32.6,46.8,56.9,68.7,73.9,77.3,77.8,79.1,124.8,125.1,125.4$, $125.5,126.0,126.3,127.9,128.2,128.4,129.0,133.1,133.5$, 136.2, 139.6, 149.9, 177.1. HRMS (EI): Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right)$: 474.2508 . Found: 474.2518.
(5S,6R)-3-[(2S,3S)-(3-hydroxy-2,4-dimethylpentanoyl)]-5-methyl-4-(2,2-dimethylpropyl)-6-phenyl-2H-1,3,4-oxadiazin-an-2-one (12h). The resultant orange oil was chromatographed using silica gel and a gradient solvent system (90:10 hexanes/EtOAc, 80:20 hexanes/EtOAc, followed by $65: 35$ hexanes/EtOAc) to give clear oil in 95\%yield. $[\alpha]_{D}{ }^{25}=-55.6(c$ $0.46, \mathrm{CHCl}_{3}$). IR (neat): $3511,1714,1234,1131,1045,761$, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, $1 \mathrm{H}), 3.05(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dq}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=5.1$, $1 \mathrm{H}), 7.23-7.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.4,13.3,17.4$, $18.8,19.1,19.8,20.1,22.0,28.5,30.1,31.0,32.7,41.6,57.0$, $69.0,79.1,80.5,125.0,128.4,129.0,136.2,149.5,178.8,207.0$. HRMS (FAB): Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 391.2592$. Found: 391.2597.
(5S,6R)-3-[(2S,3S)-(3-Hydroxy-2,4,4-trimethylpentanoyl)]-5-methyl-4-(2,2-dimethylpropyl)-6-phenyl-2H-1,3,4-oxadiaz-inan-2-one (12i). The result gave an orange oil which was chromatographed using silica gel and a solvent system of 90:10 (hexanes/EtOAc) to give a clear oil in a 99% yield $(0.628 \mathrm{~g}, 1.55$
mmol). $\mathrm{R}_{\mathrm{f}}=0.42\left(75: 25\right.$ hexanes/EtOAc). $[\alpha]_{\mathrm{d}}^{25}=-63.0(c$ $0.45, \mathrm{CHCl}_{3}$). IR (neat): 3521, 1726, 1713, 1229, 1130, 761, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \quad 0.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (s, 9H), $1.02(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.73(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{p}, J=7.0,1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dq}, J=1.6,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 13.0,13.3,27.2,28.6,32.7,35.9,40.9,57.0,68.8$, 77.9, 79.1, 125.0, 128.3, 129.0, 136.3, 149.5, 179.3. HRMS (FAB): Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 405.2748. Found: 405.2753.
(5S,6R)-4-Cyclohexyl-3-[(2S,3S)-(3-p-chlorophenyl-3-hy-droxy-2-methylpropanoyl)]-5-methyl-6-phenyl-2H-1,3,4-oxa-diazinan-2-one (12j). The solvent was removed via rotary evaporation and recrystallized affording the title compound in 67% yield. $\mathrm{Mp}=157-160{ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=-915$ (c $248, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (nujol mull): 1734, 1710, 1014, 736, 718 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19-2.10(\mathrm{~m}, 10 \mathrm{H}), 2.99$ (broad singlet, 1 H), 3.21, 3.81$3.90(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.20(\mathrm{dq}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.42(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta, 11.6,12.9,24.6$, 24.7, 25.3, 29.9, 30.6, 46.4, 51.0, 46.4, 51.0, 61.7, 73.2, 79.5, 124.7, 127.9.128.0, 128.1, 128.6, 132.9, 136.0, 140.4, 149.2, 177.4. HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 471.2051. Found: 471.2047.
(5S,6R)-4-Cyclohexyl-3-[(2S,3S)-(3-hydroxy-2,4,4-trimeth-ylpentanoyl)]-4-cyclohexyl-5-methyl-6-phenyl-2H-1,3,4-oxa-diazin-2-one (12k). This reaction produced a clear oil that was purified by column chromatography (hexanes/EtOAc, 80:20) in 99% yield. $\mathrm{R}_{\mathrm{f}}=0.19$ (80:20 hexanes/EtOAc), $[\alpha]_{\mathrm{D}}{ }^{25}=-94.3(c$ $0.54, \mathrm{CHCl}_{3}$). IR (nujol mull): 3528, 1732 (broad), 1604, 1237, 1132, $730,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.40-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.97$ $(\mathrm{s}, 1 \mathrm{H}) 2.03-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-3.00$ $(\mathrm{m}, 1 \mathrm{H}) 3.64-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J$ $=5.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 13.0,13.5,25.0,25.1,25.7,27.3,30.6,30.7$, $35.9,40.7,51.2,62.0,78.0,79.6,124.9,128.3,128.9,136.1$, 149.4, 180.5. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}){ }^{+}$: 417.2760. Found: 417.2753.
(5S,6R)-3-[(2S,3S)-(3-hydroxy-2-methyl-3-phenyl-propan-oyl)]-5-methyl-4,6-diphenyl-2 \mathbf{H}-1,3,4-oxadiazinan-2-one (121). The solvents were removed by rotary evaporation and the purified product was isolated as orange crystals in 88% yield via chromatography. Mp: 165-167 ${ }^{\circ} \mathrm{C}$ (hexanes/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{25}=$ -47.9 (c 0.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (CHCl_{3}): 3017, 1772, 1732, 1007, $755,700, \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{~s},-\mathrm{OH}, 1 \mathrm{H}), 4.19(\mathrm{dq}, J=7.2,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dq}, J=6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.57 (d, J = 4.3 Hz, 1H), 6.95-6.97 (m, 2H), 7.09-7.13 (m, 1H), 7.20-7.46 (m, 12H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.4,11.6,46.5,57.5$, $73.4,80.2,116.6,123.8,124.8,126.3,127.5,128.3,128.4$, 128.7, 130.1, 130.2, 134.9, 141.4, 147.1, 148.1. HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 431.1971 Found: 431.1967 .
($4 R, 5 S, 6 R$)-3-[(2S,3S)-(3-p-Chlorophenyl-3-hydroxy-2-methylpropanoyl)]-5-methyl-4,6-diphenyl-2H-1,3,4-oxadiaz-inan-2-one ($\mathbf{1 2 m}$). The solvents were removed by rotary evaporation and the purified product was isolated as a colorless oil in 62% yield via chromatography ($90: 10$, hexanes: EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=-30.8\left(c 0.70, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{3} \mathrm{Cl}\right): 3482,1772,1734$, $1012,755,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=1.6 \mathrm{~Hz},-\mathrm{OH}), 4.17-$ 4.19 (dq, $J=7.2,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.30(\mathrm{dq}, J=4.0,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.39(\mathrm{~m}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.6,12.1,46.9,57.7,73.3,80.5$, $116.8,124.1,125.0,128.1,128.6,128.7,129.0,130.4,133.4$, 135.0, 140.3, 147.2, 148.6, 177.1. HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 465.1581$. Found: 465.1577.

Methyl (2S,3S)-2-methyl-3-hydroxy-3-phenylpropanoate (13). In a 100 mL round bottom flask was placed the oxadiazinanone substrate and $6 \mathrm{M}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ in THF (3 mL). This reaction mixture was then heated. The reaction mixture was allowed to stir for 18 hours at $50^{\circ} \mathrm{C}$. The resulting mixture was then quenched with a solution of saturated sodium bicarbonate (20 mL) and extracted with ethyl acetate (2×20 mL). The organic layer was dried with MgSO_{4} and the solvent removed by rotary evaporation. The crude carboxylic acid was then converted to the methyl ester via methanol (1 mL) and trimethylsilyldiazomethane solution (1 mL in tetrahydrofuran). After addition of trimethylsilyldiazomethane to the mixture of methanol and carboxylic acid, the reaction mixture was allowed to stir for 2 hours at room temperature. The reaction was quenched with a saturated solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The methyl ester was then purified by column chromatography using a solvent system of 1:9 ethyl acetate and hexanes. $\mathrm{R}_{\mathrm{f}}=0.13$ (95:5 hexanes/EtOAc). Hydrolysis of 12a: $[\alpha]_{\mathrm{D}}{ }^{25}=-15.3$ (c 1.82, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Hydrolysis of 12e: $[\alpha]_{\mathrm{D}}^{25}=-13.2\left(c 1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Hydrolysis of $12 \mathrm{j}:[\alpha]_{\mathrm{D}}{ }^{25}=-15.3$ (c 1.58, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): $3482,1718,1255,1035,734,702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 1.12 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.77(\mathrm{dq}, J=4.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}$, $1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 11.1,46.8,52.0,74.0,126.2,127.7$, $128.5,141.9,176.3$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 217.0846. Found: 217.0841.

Acknowledgements. The authors thank Ms. Brittany Morgan for her technical assistance with polarimetry. The authors thank the donors of the Petroleum Research Fund as administered by the American Chemical Society for support of this research. The authors also thank the Department of Chemistry and the Dean's Office of the College of Arts \& Sciences at Illinois State University for summer support.

REFERENCES

Current Address: Chemtech Services, Inc., Joliet, IL 60436
[1] Casper, D. M.; Burgeson, J. R.; Esken, J. M.; Ferrence, G. M; Hitchcock, S. R. Org. Lett. 2002, 4, 3739-3742..
[2] Casper, D. M.; Hitchcock, S. R. Tetrahdron: Asymm. 2003, 14, 517-521.
[3] (a) Hoover, T. R.; Groeper, J. A.; Parrott II, R. W.; Chandrashekar, S. P.; Finefield, J. M.; Dominguez, A.; Hitchcock, S. R. Tetrahedron: Asymm. 2006, 17, 1831-1841. (b) Hoover, T. R.; Hitchcock, S. R. Tetrahedron: Asymm. 2003, 13, 3233-3241.
[4] (a) Corminboeuf, O.; Quaranta, L.; Renaud, P.; Liu, P.; Jasperse, C. P.; Sibi, M. P. Chem.-Eur. J. 2003, 9, 28-35. (b) Sibi, M. P.; Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 2001, 123, 8444-8445. (c) Bull, S. D.; Davies, S. G.; Fox, D. J.; Garner A. C.; Sellers, T. G. R. Pure Appl. Chem. 1998, 70, 1501-1506.
[5] (a) Hitchcock, S. R.; Casper, D. M.; Vaughn, J. F.; Finefield, J. M.; Ferrence, G. M.; Esken, J. M. J. Org. Chem. 2004, 69, 714-718. (b) Vaughn, J. F.; Hitchcock, S. R. Tetrahedron: Asymm. 2004, 15, 3449-3455.
[6] Squire, M. D.; Davis, R. A.; Chianakas, K. A.; Ferrence, G. M.; Standard, J. M.; Hitchcock, S. R. Tetrahedron: Asymm. 2005, 16, 1047-1053.
[7] Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703-3706.
[8] Caution: N-Nitrosamines should be handled with care as some N-nitrosamines are known to possess carcinogenic properties. Please see: Hecht, S. S. Proceedings of the Society for Experimental Biology and Medicine 1997, 216, 181-191.
[9] The N-phenyl- N-nitrosamine was susceptible to decomposition even at temperatures near $-20{ }^{\circ} \mathrm{C}$. This compound may have readily decomposed via a retro-Aldol type process similar to that studied by Loeppky and coworkers. Please see: (a) Loeppky, R. N.; McKinley, W. A.; Hazlitt, L. G.; Outram, J. R. J. Org. Chem. 1982, 47, 4833-4841. (b) Loeppky, R. N.; Hazlitt, L. G. J. Org. Chem. 1982, 47, 4841-4846.
[10] N-Nitrosamines 8 b and 8 c were reduced with LiAlH_{4} in THF within 2 hours at reflux. In contrast, N-nitrosamines 8a and 8d underwent over-reduction to the corresponding amine under the same reaction conditions. We were gratified to learn that the reduction of these substrates proved to be successful when the reactions were
conducted at room temperature.
[11] (a) Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Huang, T.Y. J. Am. Chem. Soc. 1993, 115, 2613-2621. (b) Zimmerman, H. E.; Traxler, M. D. J. Am. Chem.Soc. 1957, 79, 1920-1923.
[12] The enantiomeric ratios reported in this work were determined by chiral stationary phase HPLC as this method was more reliable. The literature value for the optical activity of the $(2 R, 3 R)$ methyl 2-methyl-3-phenylpropanoate is reported as $[\alpha]_{\mathrm{D}}=+23.5(c 3.23$,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$): Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem.Soc. 1990, 112, 2767-2772.
[13] Enraf-Nonius, CAD4 Express Software, Delft, The Netherlands, 1994.
[14] Harms, K.; Wocadlo, S. XCAD-4: Program for Processing CAD-4 Diffractometer Data, University of Marburg, Germany, 1995.
[15] Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.
[16] Sheldrick, G. M. SHELXS-97: Programs for crystal structure solution. University of Göttingen, Germany, 1997.
[17] Sheldrick, G. M. SHELXL97: Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.

